
The Fine Art of

Schema Design: Dos

and Don'ts

Senior Solutions Architect, MongoDB Inc.

Matias Cascallares

matias@mongodb.com

Who am I?

• Originally from Buenos Aires,

Argentina

• Solutions Architect at MongoDB

Inc based in Singapore

• Software Engineer, most of my

experience in web environments

• In my toolbox I have Java, Python

and Node.js

RDBMs

• Relational databases are made up of tables

• Tables are made up of rows:

• All rows have identical structure

• Each row has the same number of columns

• Every cell in a column stores the same type of data

MONGODB IS A

DOCUMENT

ORIENTED

DATABASE

Show me a document

{
 "name" : "Matias Cascallares",
 "title" : "Senior Solutions Architect",
 "email" : "matias@mongodb.com",
 "birth_year" : 1981,
 "location" : ["Singapore", "Asia"],
 "phone" : {
 "type" : "mobile",
 "number" : "+65 8591 3870"
 }
}

Document Model

• MongoDB is made up of collections

• Collections are composed of documents

• Each document is a set of key-value pairs

• No predefined schema

• Keys are always strings

• Values can be any (supported) data type

• Values can also be an array

• Values can also be a document

Benefits of
document
model ..?

Flexibility

• Each document can have different fields

• No need of long migrations, easier to be agile

• Common structure enforced at application level

Arrays

• Documents can have field with array values

• Ability to query and index array elements

• We can model relationships with no need of different

tables or collections

Embedded documents

• Documents can have field with document values

• Ability to query and index nested documents

• Semantic closer to Object Oriented Programming

Indexing an array of documents

Relational

Schema Design

Focus on
data

storage

Document

Schema Design

Focus on
data

usage

SCHEMA

DESIGN IS

AN ART
https://www.flickr.com/photos/76377775@N05/11098637655/

https://www.flickr.com/photos/76377775@N05/11098637655/

Implementing

Relations

https://www.flickr.com/photos/ravages/2831688538

https://www.flickr.com/photos/ravages/2831688538

A task

tracking app

Requirement #1

"We need to store user information like name, email
and their addresses… yes they can have more than
one.”

— Bill, a project manager, contemporary

Relational

id name email title

1 Kate

Powell

kate.powell@somedomain.c

om

Regional Manager

id street city user_id

1 123 Sesame Street Boston 1

2 123 Evergreen Street New York 1

mailto:kate.powell@somedomain.com

Let’s use the document model

> db.user.findOne({ email: "kate.powell@somedomain.com"})
{
 _id: 1,
 name: "Kate Powell",
 email: "kate.powell@somedomain.com",
 title: "Regional Manager",
 addresses: [
 { street: "123 Sesame St", city: "Boston" },
 { street: "123 Evergreen St", city: "New York" }
]
}

Requirement #2

"We have to be able to store tasks, assign them to
users and track their progress…"

— Bill, a project manager, contemporary

Embedding tasks

> db.user.findOne({ email: "kate.powell@somedomain.com"})
{
 name: "Kate Powell",
 // ... previous fields
 tasks: [
 {
 summary: "Contact sellers",
 description: "Contact agents to specify our needs
 and time constraints",
 due_date: ISODate("2014-08-25T08:37:50.465Z"),
 status: "NOT_STARTED"
 },
 { // another task }
]
}

Embedding tasks

• Tasks are unbounded items: initially we do not know

how many tasks we are going to have

• A user along time can end with thousands of tasks

• Maximum document size in MongoDB: 16 MB !

• It is harder to access task information without a user

context

Referencing tasks

> db.user.findOne({_id: 1})
{
 _id: 1,
 name: "Kate Powell",
 email: "kate.powell@...",
 title: "Regional Manager",
 addresses: [
 { // address 1 },
 { // address 2 }
]
}

> db.task.findOne({user_id: 1})
{
 _id: 5,
 summary: "Contact sellers",
 description: "Contact agents
 to specify our ...",
 due_date: ISODate(),
 status: "NOT_STARTED",
 user_id: 1
}

Referencing tasks

• Tasks are unbounded items and our schema supports

that

• Application level joins

• Remember to create proper indexes (e.g. user_id)

Embedding

vs

Referencing

One-to-many relations

• Embed when you have a few number of items on ‘many'

side

• Embed when you have some level of control on the

number of items on ‘many' side

• Reference when you cannot control the number of items

on the 'many' side

• Reference when you need to access to ‘many' side items

without parent entity scope

Many-to-many relations

• These can be implemented with two one-to-many

relations with the same considerations

RECIPE #1

USE EMBEDDING

FOR ONE-TO-FEW
RELATIONS

RECIPE #2

USE REFERENCING

FOR ONE-TO-MANY
RELATIONS

Working with

arrays

https://www.flickr.com/photos/kishjar/10747531785

https://www.flickr.com/photos/kishjar/10747531785

Arrays are
great!

List of sorted elements

> db.numbers.insert({
 _id: "even",
 values: [0, 2, 4, 6, 8]
});

> db.numbers.insert({
 _id: "odd",
 values: [1, 3, 5, 7, 9]
});

Access based on position

db.numbers.find({_id: "even"}, {values: {$slice: [2, 3]}})
{
 _id: "even",
 values: [4, 6, 8]
}

db.numbers.find({_id: "odd"}, {values: {$slice: -2}})
{
 _id: "odd",
 values: [7, 9]
}

Access based on values

// is number 2 even or odd?
> db.numbers.find({ values : 2 })
{
 _id: "even",
 values: [0, 2, 4, 6, 8]
}

Like sorted sets

> db.numbers.find({ _id: "even" })
{
 _id: "even",
 values: [0, 2, 4, 6, 8]
}

> db.numbers.update(
 { _id: "even"},
 { $addToSet: { values: 10 } }
);

Several times…!

> db.numbers.find({ _id: "even" })
{
 _id: "even",
 values: [0, 2, 4, 6, 8, 10]
}

Array update operators

• pop

• push

• pull

• pullAll

But…

Storage

{
 _id: 1,
 name: "Nike Pump Air 180",
 tags: ["sports", "running"]
}

db.inventory.update(
 { _id: 1},
 { $push: { tags: "shoes" } }  
)

DocA DocCDocB

Empty

Storage

DocA DocCDocB

IDX IDX IDX

Empty

Storage

DocA DocC DocB

IDX IDX IDX

Why is expensive to move a doc?

1. We need to write the document in another location ($$)

2. We need to mark the original position as free for new

documents ($)

3. We need to update all those index entries pointing to the

moved document to the new location ($$$)

Considerations with arrays

• Limited number of items

• Avoid document movements

• Document movements can be delayed with padding

factor

• Document movements can be mitigated with pre-

allocation

RECIPE #3

AVOID EMBEDDING

LARGE ARRAYS

RECIPE #4

USE DATA MODELS
THAT MINIMIZE THE

NEED FOR

DOCUMENT

GROWTH

Denormalization

https://www.flickr.com/photos/ross_strachan/5146307757

https://www.flickr.com/photos/ross_strachan/5146307757

Denormalization

"…is the process of attempting to optimise the
read performance of a database by adding
redundant data …”

— Wikipedia

Products and comments

> db.product.find({ _id: 1 })
{
 _id: 1,
 name: "Nike Pump Air Force 180",
 tags: ["sports", "running"]
}

> db.comment.find({ product_id: 1 })
{ score: 5, user: "user1", text: "Awesome shoes" }
{ score: 2, user: "user2", text: "Not for me.." }

Denormalizing

> db.product.find({_id: 1})
{
 _id: 1,
 name: "Nike Pump Air Force 180",
 tags: ["sports", “running"],
 comments: [
 { user: "user1", text: "Awesome shoes" },
 { user: "user2", text: "Not for me.." }
]
}

> db.comment.find({product_id: 1})
{ score: 5, user: "user1", text: "Awesome shoes" }
{ score: 2, user: "user2", text: "Not for me.."}

RECIPE #5

DENORMALIZE

TO AVOID

APP-LEVEL JOINS

RECIPE #6

DENORMALIZE ONLY
WHEN YOU HAVE A

HIGH READ TO WRITE
RATIO

Bucketing

https://www.flickr.com/photos/97608671@N02/13558864555/

https://www.flickr.com/photos/97608671@N02/13558864555/

What’s the idea?

• Reduce number of documents to be retrieved

• Less documents to retrieve means less disk seeks

• Using arrays we can store more than one entity per

document

• We group things that are accessed together

An example

Comments are showed in

buckets of 2 comments

A ‘read more’ button

loads next 2 comments

Bucketing comments

> db.comments.find({post_id: 123})
 .sort({sequence: -1})
 .limit(1)
{
 _id: 1,
 post_id: 123,
 sequence: 8, // this acts as a page number
 comments: [
 {user: user1@somedomain.com, text: "Awesome shoes.."},
 {user: user2@somedomain.com, text: "Not for me..”}
] // we store two comments per doc, fixed size bucket
}

mailto:user1@somedomain.com
mailto:user2@somedomain.com?subject=

RECIPE #7

USE BUCKETING TO
STORE THINGS THAT
ARE GOING TO BE
ACCESSED AS A

GROUP

��

